Featrix Cheatsheet¶
Minimal copy-paste patterns for AI agents.
Setup¶
Train Model + Predictor¶
# From CSV
fm = featrix.create_foundational_model(data_file="data.csv")
fm.wait_for_training()
# Binary classification
predictor = fm.create_binary_classifier(target_column="is_fraud", rare_label_value="fraud")
predictor.wait_for_training()
# Multi-class classification
predictor = fm.create_multi_classifier(target_column="category")
predictor.wait_for_training()
# Regression
predictor = fm.create_regressor(target_column="price")
predictor.wait_for_training()
Predict¶
# Single
result = predictor.predict({"col1": "value", "col2": 123})
print(result.predicted_class, result.confidence)
# Batch
results = predictor.batch_predict([{"col1": "a"}, {"col1": "b"}])
# From CSV
results = predictor.predict_csv_file("test.csv")
Resume Existing¶
fm = featrix.foundational_model("session-id-here")
predictor = featrix.predictor("predictor-id", "session-id")
Deploy¶
Feedback¶
Similarity Search¶
Explainability¶
Cost-Sensitive (Fraud/Churn)¶
predictor = fm.create_binary_classifier(
target_column="is_fraud",
rare_label_value="fraud",
cost_false_negative=5000,
cost_false_positive=10
)
Ignore Columns¶
fm = featrix.create_foundational_model(
data_file="data.csv",
ignore_columns=["id", "timestamp", "notes"]
)
Check Result Properties¶
result.predicted_class # "fraud" or "legitimate"
result.prediction # raw value (float for regression)
result.confidence # 0.0 to 1.0
result.probabilities # {"fraud": 0.9, "legitimate": 0.1}
result.prediction_uuid # for feedback
result.guardrails # {"col": "warning"} if input unusual
result.feature_importance # {"col": 0.5, ...} if requested
Check Model Properties¶
fm.status # "training", "done", "error"
fm.columns # ["col1", "col2", ...]
fm.dimensions # embedding size
predictor.status # "training", "done", "error"
predictor.accuracy # 0.0 to 1.0
predictor.auc # ROC-AUC score